alkali

UNSUR

3Li

11Na

19K

37Rb

55Cs

87Fr
1. Konfigurasi elektron
[X] ns1
2. Massa atom
3. Jari-jari atom (n.m)
4. Keelektronegatifan

Rendah (antara 0.7 – 1.0)

Di atas suhu kamar (antara 28.7o – 180.5o)

5. Suhu lebur (oC)
6. Energi ionisasi (kJ/mol)
Antara 376 – 519
7. Potensial oksidasi (volt)
Positif, antara 2.71 – 3.02 (reduktor)
8. Bilangan oksidasi +1 +1 +1 +1

+1
+1

Catatan :

[X] = unsur-unsur gas mulia (He, Ne, Ar, Kr, Xe, Rn)

n = nomor perioda (2, 3, 4, 5, 6, 7)

® = makin besar sesuai dengan arah panah

Logam alkali
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Logam-logam metal, disimpan di dalam minyak

Logam alkali adalah kelompok unsur kimia pada Golongan 1 tabel periodik, kecuali hidrogen. Kelompok ini terdiri dari: litium (Li), natrium (Na), kalium (K), rubidium (Rb), sesium (Cs), dan fransium (Fr). Semua unsur pada kelompok ini sangat reaktif sehingga secara alami tak pernah ditemukan dalam bentuk tunggal. Untuk menghambat reaktivitas, unsur-unsur logam alkali harus disimpan dalam medium minyak.

Logam Alkali dan Alkali Tanah
Kata Kunci: logam alkali, logam alkali tanah, logam-logam blok s, pola rumus molekul, sifat logam alkali
Ditulis oleh Ratna dkk pada 07-02-2009

logam_alkaliLogam-logam Golongan 1 dan 2 dalam Susunan Berkala berturut-turut disebut logam-logam alkali dan alkali tanah karena logam-logam tersebut membentuk oksida dan hidroksida yang larut dalam air menghasilkan larutan basa.

Logam-logam alkali dan alkali tanah disebut juga logam-logam blok s karena hanya terdapat satu atau dua elektron pada kulit terluarnya. Elektron terluar ini menempati tipe orbital s (sub kulit s) dan sifat logam-logam ini seperti energi ionisasi (IE) yang rendah, ditentukan oleh hilangnya elektron s ini membentuk kation. Golongan 1 Logam Alkali yang kehilangan satu elektron s1 terluarnya menghasilkan ion M+ dan Golongan 2 Logam Alkali Tanah yang kehilangan dua elektron s2 terluarnya menghasilkan ion M2+. Sebagai akibatnya, sebagian besar senyawa dari unsur-unsur Golongan 1 dan 2 cenderung bersifat ionik.

Logam Alkali

* Logam Alkali sangat reaktif, karena itu harus disimpan dalam minyak.
* Sifat yang umum dimiliki oleh logam alkali adalah sebagai konduktor panas yang baik, titik didih tinggi, permukaan berwarna abu-abu keperakan.
* Atom logam alkali bereaksi dengan melepaskan 1 elektron membentuk ion bermuatan +1. Na → Na+ + 1 e-. Susunan elektron dari 2.8.1 o 2.8, yang merupakan konfigurasi elektron gas mulia.

Sifat lain logam alkali, memiliki titik leleh rendah, densitas rendah, sangat lunak.

Kecenderungan golongan alkali dengan meningkatnya nomor atom adalah:

Titik leleh dan titik didih menurun

Unsur lebih reaktif

Ukuran Atom membesar (jari-jari makin besar)

Densitas meningkat proportional dengan meningkatnya massa atom.

Kekerasan menurun

Jika dipanaskan diatas nyala api memberikan warna yang spesifik. Litium – merah, natrium – kuning, Kalium – lila/ungu, Cesium – biru.

tabel_data_logam_alkali

Logam Alkali Tanah

Dibandingkan dengan logam alkali pada periode yang sama :

* Titik leleh dan titik didih lebih tinggi, lebih keras, lebih kuat dan lebih padat. Hal ini disebabkan karena terdapat dua delokalisas elektron per ion dalam kristal yang memberikan gaya elektronik lebih besar dengan muatan ion . M2+ yang lebih tinggi.
* Sifat kimia sangat mirip misalnya dalam pembentukan senyawa ionik tetapi berbeda dalam rumus dan reaktivitas lebih rendah karena energi ionisasi (IE) pertama lebih tinggi dan terdapatnya energi ionisasi kedua membentuk ion M2+ yang stabil.
* Bilangan oksidasi senyawa selalu +2 di dalam senyawa.
o Dua elektron s terluar lepas. Sedangkan energi ionisasi ketiga sangat tinggi untuk membentu ion +3.

Golongan 2 yang stabil membentuk konfigurasi elektron gas mulia.

* Contoh : ion kalsium, Ca2+, is 2,8,8 or 1s22s22p63s23p6 atau[Ar]

* Pada umumnya makin ke bawah dalam satu golongan nomor atom cenderung makin meningkat.
* Energi Ionisasi pertama atau kedua menurun
o Karena jari-jari atom makin besar akibat adanya ekstra kulit yang terisi. Elektron terluar sangat jauh dari inti sehinga tertarik lemah oleh inti sehingga lebih sedikit energi yang diperlukan untuk melepaskannya.

* Potensial energi selalu meningkat dengan urutan . … ke 3 > 2 > 1, karena muatan inti yang sama menarik sedikit elektron yang rata-rata lebih dekat dengan inti. TETAPI dengan catatan IE ke 2 untuk golongan 1, IE ke 3 untuk golongan 2 menunjukkan menunjukkan peningkatan yang luar biasa dibandingkan IE sebelumnya.

* Jari-jari Atom atau ionik meningkat:
o Disebabkan adanya kulit yang lebih banyak.
o Jari-jari golongan 2 lebih kecil dari pada golongan 1.karena tarikan elektron dengan jumlah kulit yang sama.
o Biasanya jari-jari ion holongan 2 M2+ lebih kecil dari pada golongan 1 M+ pada periode yang sama karena muatan inti meningkat.

* Pada umumnya (tidak selalu) titik didih dan titik leleh menurun
o Disebabkan peningkatan jari-jari ion dan meningkatnya muatan.

* Lebih reaktif karena makin ke bawah makin mudah membentuk ion.
* Electronegativity cenderung menurun:
* Pola rumus molekul:
o Rumus umum dapat ditulis M2O atau rumus ionik (M+)2O2- dimana M adalah Li sampai Fr atau Be sampai Ra.

Pengertian Korosi

Kerusakan merupakan proses redoks pada permukaan logam dan llingkungannya. Korosi atau pengkaratan adalah kerusakan atau degradasi logam akibat bereaksi dengan lingkungan yang korosif. korosi ini, yaitu reaksi kimia antara logam dengan zat-zat yang ada di sekitarnya atau dengan partikel-partikel lain yang ada di dalam matrik logam itu sendiri.. Contoh korosi yang paling lazim adalah perkaratan besi. Pada peristiwa korosi, logam mengalami oksidasi, sedangkan oksigen (udara) mengalami reduksi. Karat logam umumnya berupa oksida atau karbonat.
Rumus kimia karat besi adalah Fe2O3 . XH2O, suatu zat padat yang berwarna coklat-merah. Pada korosi besi, bagian tertentu dari besi berlaku sebagai anode, dinama besi mengalami oksidasi.
Fe(s) → Fe2+(aq) + 2e E0 = + 0,44 V
Elektron yang dibebaskan di anode mengalir ke bagian lain dari besi yang berlaku sebagai katode, dimana oksigen tereduksi.
O2(g) + 2H2O(l) + 4e → 4OH-(aq) E0 = + 0,40 V
atau
O2(g) + HH+(aq) + 4e → 2H2O(l) E0 = + 1,23 V
Ion besi (II) yang terbentuk pada anode selanjutnya teroksidasi membentuk ion besi (III) yang kemudian membentuk senyawa oksida terhidrasi, Fe2O3 . XH2¬O, yaitu karat besi. Maka reaksi yang terjadi :
Anode : 2Fe(s) → 2Fe2+(aq) + 4e E0 = + 0,44 V
Katode : O2(g) + 2H2O(l) + 4e → 4OH-(aq) E0 = + 0,40 V
+
Reaksi Sel : 2Fe(s) + O2(g) + 2H2O(l) → 2Fe2+(aq) + 4OH-(aq) E0reaksi = 0,84 V
Ion Fe2+ tersebut kemudian mengalami oksidasi lebih lanjut dengan reaksi :
4Fe2+(aq) + O2(g) + (4 + 2n) H2O → 2Fe2O3 . nH2O + 8H+(aq)
Mengenai bagian mana dari besi itu yang bertindak sebagai anode dan dan bagian mana yang bertindak sebagai katode bergantung pada berbagai faktor, misalnya zat pengotor, atau perbedaan rapatan logam itu. Korosi besi memerlukan oksigen dan air.
Reaksi-reaksi yang Terjadi pada Proses Korosi Logam
Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Proses elektrokimia melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi anodik dan reaksi katodik.
a.Reaksi Anodik (Oksidasi)
Reaksi Anodik terjadi di daerah anode. Reaksi anodik (oksidasi) diindikasikan melalui peningkatan valensi atau produk elektron-elektron. Reaksi anodik yang terjadi pada proses korosi logam, yaitu :
M → Mn+ + ne
Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n+) dalam pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi :
Fe → Fe2+ + 2e
b.Reaksi Katodik (Reduksi)
Reaksi katodik terjadi di daerah katode. Reaksi katodik diindikasikan melalui penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik.
Beberapa reaksi katodik yang terjadi selama proses korosi logam, yaitu :
Pelepasan gas hidrogen
2H+ + 2e → H2
Reduksi oksigen
O2 + 4H+ + 4e → 2H2O
O2 + 2H2O + 4e → 4OH¬-
Reduksi ion logam
Fe3+ + e → Fe2+
Pengendapan logam
3Na+ + 3e → 3Na
Reduksi ion hidrogen
O2 + 4H+ + 4e → 2H2O
Penyebab Korosi
Faktor yang berpengaruh dan mempercepat korosi yaitu :
a.Air dan kelembapan udara
Air merupakan salah satu faktor penting untuk berlangsungnya proses korosi. Udara yang banyak mengandung uap air (lembap) akan mempercepat berlangsungnya proses korosi.
b.Elektrolit
Elektrolit (asam atau garam) merupakan media yang baik untuk melangsungkan transfer muatan. Hal itu mengakibatkan elektron lebih mudah untuk dapat diikat oleh oksigen di udara. Oleh karena itu, air hujan (asam) dan air laut (garam) merupakan penyebab korosi yang utama.
c.Adanya oksigen
Pada peristiwa korosi adanya oksigen mutlak diperlukan.
d.Permukaan logam
Permukaan logam yang tidak rata memudahkan terjadinya kutub-kutub muatan, yang akhirnya akan berperan sebagai anode dan katode. Permukaan logam yang licin dan bersih akan menyebabkan korosi sukar terjadi, sebab sukar terjadi kutub-kutub yang akan bertindak sebagai anode dan katode.
e.Letak logam dalam deret potensial reduksi
Korosi akan sangat cepat terjadi pada logam yang potensialnya rendah, sedangkan logam yang potensialnya lebih tinggi justru lebih awet.
Cara Mencegah Korosi
1)Dicat
Cat menghindarkan kontak besi dengan udara dan air.
2)Melumuri dengan oli atau minyak
Cara ini diterapkan untuk berbagai perkakas dan mesin oli atau minyak mencegah kontak besi dengan air
3)Dibalut dengan plastik
Berbagai macam barang, misalnya rak piring dan kerancang sepeda dibalut dengan plastik. Plastik mencegah kontak besi udara dan air.
4)Tin plating (pelapisan dengan timah)
Biasanya kaleng-kaleng kemasan terbuat dari besi dilapisi dengan timah. Pelapisan dilakukan secara elektrolisis, yang disebut electro plating. Timah tergolong logam yang tahan karat. Besi yang dilapisi timah tidak mengalami korosi karena tidak adanya kontak dengan oksigen (udara) dan air. Akan tetapi, lapisan timah hanya melindungi besi selama lapisan utuh (tanpa cacat). Apabila lapisan timah ada yang cacat, misalnya tergores, maka timah justru mendorong/mempercepat kolosi besi. Hal itu terjadi karena potensial reduksi besi lebih negatif daripada timah. Oleh karena itu, besi yang dilapisi timah akan membentuk suatu sel elektrokimia dengan besi sebagai anode. Dengan demikian timah mendorong korosi besi.
5)Galvanisasi (pelapisan dengan zink)
Pipa besi, tiang telepon, badan mobil, dan berbagai barang lain dilapisi dengan zink. Berbeda dengan timah, zink dapat melindungi besi dari korosi sekalipun lapisannya tidak utuh. Hal itu terjadi karena suatu mekanisme yang disebut perlindungan katode. Oleh karena potensial reduksi besi lebih positif daripada zink, maka besi yang kontak dengan zink akan membentuk sel elektrokimia dengan besi sebagai katode. Dengan demikian, besi terlindungi dan zink yang mengalami oksidasi.
6)Cromium plating (pelapisan dengan kromium)
Besi atau baja juga dapat dilapisi dengan kromium untuk memberi lapisan pelindung yang mengkilap, misalnya untuk bemper mobil. Cromium plating juga dilakukan dengan elekrolisis. Sama seperti zink, kromium juga dapat memberi perlindungan sekalipun lapisan kromium itu ada yang rusak.
7)Sacrificial protection (pengorbanan anode)
Magnesium adalah logam yang jauh labih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti.
Korosi Aluminium (Perlindungan Katodit)
Aluminium, juga zink dan kromium, merupakan logam yang lebih aktif daripada besi. Jika demikian, mengapa logam-logam ini lebih awet? Sebenarnya, aluminium berkarat dengan cepat membentuk oksida aluminium (Al2O3). Akan tetapi, perkaratan segera terhenti setelah lapisan tipis oksida terbentuk. Lapisan itu melekat pada permukaan logam, sehingga melindungi logam di bawahnya terhadap perkaratan berlanjut.
Lapisan oksida pada permukaan aluminium dapat dibuat lebih tebal melalui elektrolisi, yang disebut anodizing. Aluminium yang telah mengalami anodizing digunakan untuk membuat panci dan berbagai perkakas dapur, bingkai, kerangka bangunan (panel dinding), serta kusen pintu dan jendela. Lapisan oksida aluminium lebih mudah dicat dan memberi warna yang lebih terang.
sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan non-konduktor pada komponen elektronik. Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika renik sampai jembatan baja semakin mudah rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa.
MEKANISME KOROSI
Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Reaksi elektrokimia
melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi
redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi
anodik di daerah anodik. Reaksi anodik (oksidasi) diindikasikan melalui peningkatan valensi
atau produk elektron-elektron. Reaksi anodik yang terjadi pada proses korosi logam yaitu :
M –>Mn+ + ne
Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n+) dalam
pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi :
Fe–>Fe2+ + 2e
Reaksi katodik juga berlangsung di proses korosi. Reaksi katodik diindikasikan melalui
penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik.
Reaksi katodik terletak di daerah katoda. Beberapa jenis reaksi katodik yang terjadi selama
proses korosi logam yaitu :
sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan non-konduktor pada komponen elektronik. Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika renik sampai jembatan baja semakin mudah rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa.
MEKANISME KOROSI
Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Reaksi elektrokimia
melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi
redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi
anodik di daerah anodik. Reaksi anodik (oksidasi) diindikasikan melalui peningkatan valensi
atau produk elektron-elektron. Reaksi anodik yang terjadi pada proses korosi logam yaitu :
M –>Mn+ + ne
Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n+) dalam
pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi :
Fe–>Fe2+ + 2e
Reaksi katodik juga berlangsung di proses korosi. Reaksi katodik diindikasikan melalui
penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik.
Reaksi katodik terletak di daerah katoda. Beberapa jenis reaksi katodik yang terjadi selama
proses korosi logam yaitu :
Pelepasan gas hydrogen :2H- + 2e –>H2
Reduksi oksigen :O2 +4H- + 4e –>H2O
O2+ H2O4 –> 4OH
Reduksi ion logam :Fe 3 ++ e –>Fe 2 +
Pengendapan logam :3Na + + 3 e –> 3 Na
Reduksi ion hydrogen :O2 +4H+ + 4 e –>2H2O
O2+ 2H2O + 4e –> 4OH-
Reaksi katodik dimana oksigen dari udara akan larut dalam larutan terbuka. Reaksi korosi
tersebut sebagai berikut :
NaCl.H2O
2 Fe +O2——————->Fe 2O 3
KESIMPULAN
Korosi adalah suatu gejala kimia yang menyerang logam dan mengakibatkan
kerusakan pada logam tersebut. Adapun faktor-faktor yang mempengaruhi korosi, yaitu :
1. Kelembaban udara
2. Elektrolit
3.Zat terlarut pembentuk asam (CO2, SO2)
4.Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi
Korosi dapat dicegah dengan cara :
1. Melapis permukaan logam dengan cat.
2.Melapis permukaan logam dengan proses pelapisan atau Electroplating.
3.Membuat lapisan yang tahan terhadap korosi seperti Anodizing Plant .
4.Membuat sistem perlindungan dengan anoda korban.
5. Membuat logam paduan yang tahan terhadap korosi

Korosi

KOROSI
1.

Prinsip

Korosi adalah peristiwa rusaknya logam karena reaksi dengan lingkungannya (Roberge, 1999). Definisi lainnya adalah korosi merupakan rusaknya logam karena adanya zat penyebab korosi, korosi adalah fenomena elektrokimia dan hanya menyerang logam (Gunaltun, 2003).

Pada dasarnya peristiwa korosi adalah reaksi elektrokimia. Secara alami pada permukaan logam dilapisi oleh suatu lapisan film oksida (FeO.OH). Pasivitas dari lapisan film ini akan rusak karena adanya pengaruh dari lingkungan, misalnya adanya penurunan pH atau alkalinitas dari lingkungan ataupun serangan dari ion-ion klorida. Pada proses korosi terjadi reaksi antara ion-ion dan juga antar elektron. Anode adalah bagian dari permukaan logam dimana metal akan larut.

Reaksinya :

Fe —–> 2 Fe++ + 4e-

Dengan kata lain ion-ion besi Fe++ akan melarut dan elektron-elektron e- tetap tinggal pada logam. Katode adalah bagian permukaan logam dimana elektron-elektron 4e- yang tertinggal akan menuju kesana (oleh logam) dan bereaksi dengan O2 dan H2O.

O2 + H2O + 4e- —–> 4 OH-
Ion-ion 4 OH- di anode bergabung dengan ion 2 Fe++ dan membentuk 2 Fe(OH)2. Oleh kehadiran zat asam dan air maka terbentuk karat Fe2O3.

2.

Reaksi perkaratan besi
a.

Anoda: Fe(s) ® Fe2+ + 2e

Katoda: 2 H+ + 2 e- ® H2

2 H2O + O2 + 4e- ® 4OH-

b.
2H+ + 2 H2O + O2 + 3 Fe ® 3 Fe2+ + 4 OH- + H2
Fe(OH)2 oleh O2 di udara dioksidasi menjadi Fe2O3 . nH2O

3.

Faktor yang berpengaruh

1. Kelembaban udara
2. Elektrolit
3. Zat terlarut pembentuk asam (CO2, SO2)
4. Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi

4.

Mencegah Korosi

1. Dicat
2. Dilapisi logam yang lebih mulia
3. Dilapisi logam yang lebih mudah teroksidasi
4. Menanam batang-batang logam yang lebih aktif dekat logam besi dan dihubungkan
5. Dicampur dengan logam lain

Korosi adalah kerusakan atau degradasi logam akibat reaksi dengan lingkungan yang korosif. Korosi dapat juga diartikan sebagai serangan yang merusak logam karena logam bereaksi secara kimia atau elektrokimia dengan lingkungan. Ada definisi lain yang mengatakan bahwa korosi adalah kebalikan dari proses ekstraksi logam dari bijih mineralnya. Contohnya, bijih mineral logam besi di alam bebas ada dalam bentuk senyawa besi oksida atau besi sulfida, setelah diekstraksi dan diolah, akan dihasilkan besi yang digunakan untuk pembuatan baja atau baja paduan. Selama pemakaian, baja tersebut akan bereaksi dengan lingkungan yang menyebabkan korosi (kembali menjadi senyawa besi oksida). Korosi atau secara awam lebih dikenal dengan istilah pengkaratan merupakan fenomena kimia pada bahan-bahan logam di berbagai macam kondisi lingkungan. Penyelidikan tentang sistim elektrokimia telah banyak membantu menjelaskan mengenai korosi ini, yaitu reaksi kimia antara logam dengan zat-zat yang ada di sekitarnya atau dengan partikel-partikel lain yang ada di dalam matrik logam itu sendiri. Jadi dilihat dari sudut pandang kimia, korosi pada dasarnya merupakan reaksi logam menjadi ion pada permukaan logam yang kontak langsung dengan lingkungan berair dan oksigen.

penyebab korosi

Faktor yang berpengaruh terhadap korosi dapat dibedakan menjadi dua, yaitu yang berasal dari bahan itu sendiri dan dari lingkungan. Faktor dari bahan meliputi kemurnian bahan, struktur bahan, bentuk kristal, unsur-unsur kelumit yang ada dalam bahan, teknik pencampuran bahan dan sebagainya. Faktor dari lingkungan meliputi tingkat pencemaran udara, suhu, kelembaban, keberadaan zat-zat kimia yang bersifat korosif dan sebagainya. Bahan-bahan korosif (yang dapat menyebabkan korosi) terdiri atas asam, basa serta garam, baik dalam bentuk senyawa an-organik maupun organik.

Penguapan dan pelepasan bahan-bahan korosif ke udara dapat mempercepat proses korosi. Udara dalam ruangan yang terlalu asam atau basa dapat memeprcepat proses korosi peralatan elektronik yang ada dalam ruangan tersebut. Flour, hidrogen fluorida beserta persenyawaan-persenyawaannya dikenal sebagai bahan korosif. Dalam industri, bahan ini umumnya dipakai untuk sintesa bahan-bahan organik. Ammoniak (NH3) merupakan bahan kimia yang cukup banyak digunakan dalam kegiatan industri. Pada suhu dan tekanan normal, bahan ini berada dalam bentuk gas dan sangat mudah terlepas ke udara. Ammoniak dalam kegiatan industri umumnya digunakan untuk sintesa bahan organik, sebagai bahan anti beku di dalam alat pendingin, juga sebagai bahan untuk pembuatan pupuk. Bejana-bejana penyimpan ammoniak harus selalu diperiksa untuk mencegah terjadinya kebocoran dan pelepasan bahan ini ke udara.

Embun pagi saat ini umumnya mengandung aneka partikel aerosol, debu serta gas-gas asam seperti NOx dan SOx. Dalam batubara terdapat belerang atau sulfur (S) yang apabila dibakar berubah menjadi oksida belerang. Masalah utama berkaitan dengan peningkatan penggunaan batubara adalah dilepaskannya gas-gas polutan seperti oksida nitrogen (NOx) dan oksida belerang (SOx). Walaupun sebagian besar pusat tenaga listrik batubara telah menggunakan alat pembersih endapan (presipitator) untuk membersihkan partikel-partikel kecil dari asap batubara, namun NOx dan SOx yang merupakan senyawa gas dengan bebasnya naik melewati cerobong dan terlepas ke udara bebas. Di dalam udara, kedua gas tersebut dapat berubah menjadi asam nitrat (HNO3) dan asam sulfat (H2SO4). Oleh sebab itu, udara menjadi terlalu asam dan bersifat korosif dengan terlarutnya gas-gas asam tersebut di dalam udara. Udara yang asam ini tentu dapat berinteraksi dengan apa saja, termasuk komponen-komponen renik di dalam peralatan elektronik. Jika hal itu terjadi, maka proses korosi tidak dapat dihindari lagi.

Korosi yang menyerang piranti maupun komponen-komponen elektronika dapat mengakibatan kerusakan bahkan kecelakaan. Karena korosi ini maka sifat elektrik komponen-komponen elektronika dalam komputer, televisi, video, kalkulator, jam digital dan

Pengertian Korosi

Kerusakan merupakan proses redoks pada permukaan logam dan llingkungannya. Korosi atau pengkaratan adalah kerusakan atau degradasi logam akibat bereaksi dengan lingkungan yang korosif. Penyelidikan tentang sistem elektrokimia telah banyak membantu menjelaskan mengenai korosi ini, yaitu reaksi kimia antara logam dengan zat-zat yang ada di sekitarnya atau dengan partikel-partikel lain yang ada di dalam matrik logam itu sendiri. Jadi dilihat dari sudut pandang kimia, korosi pada dasarnya merupakan reaksi logam menjadi ion pada permukaan logam yang kontak langsung dengan lingkungan berair dan beroksigen. Contoh korosi yang paling lazim adalah perkaratan besi. Pada peristiwa korosi, logam mengalami oksidasi, sedangkan oksigen (udara) mengalami reduksi. Karat logam umumnya berupa oksida atau karbonat.
Rumus kimia karat besi adalah Fe2O3 . XH2O, suatu zat padat yang berwarna coklat-merah. Pada korosi besi, bagian tertentu dari besi berlaku sebagai anode, dinama besi mengalami oksidasi.
Fe(s) → Fe2+(aq) + 2e E0 = + 0,44 V
Elektron yang dibebaskan di anode mengalir ke bagian lain dari besi yang berlaku sebagai katode, dimana oksigen tereduksi.
O2(g) + 2H2O(l) + 4e → 4OH-(aq) E0 = + 0,40 V
atau
O2(g) + HH+(aq) + 4e → 2H2O(l) E0 = + 1,23 V
Ion besi (II) yang terbentuk pada anode selanjutnya teroksidasi membentuk ion besi (III) yang kemudian membentuk senyawa oksida terhidrasi, Fe2O3 . XH2­O, yaitu karat besi. Maka reaksi yang terjadi :
Anode : 2Fe(s) → 2Fe2+(aq) + 4e E0 = + 0,44 V
Katode : O2(g) + 2H2O(l) + 4e → 4OH-(aq) E0 = + 0,40 V
+
Reaksi Sel : 2Fe(s) + O2(g) + 2H2O(l) → 2Fe2+(aq) + 4OH-(aq) E0reaksi = 0,84 V
Ion Fe2+ tersebut kemudian mengalami oksidasi lebih lanjut dengan reaksi :
4Fe2+(aq) + O2(g) + (4 + 2n) H2O → 2Fe2O3 . nH2O + 8H+(aq)
Mengenai bagian mana dari besi itu yang bertindak sebagai anode dan dan bagian mana yang bertindak sebagai katode bergantung pada berbagai faktor, misalnya zat pengotor, atau perbedaan rapatan logam itu. Korosi besi memerlukan oksigen dan air.

Reaksi-reaksi yang Terjadi pada Proses Korosi Logam
Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Proses elektrokimia melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi anodik dan reaksi katodik.

a.Reaksi Anodik (Oksidasi)
Reaksi Anodik terjadi di daerah anode. Reaksi anodik (oksidasi) diindikasikan melalui peningkatan valensi atau produk elektron-elektron. Reaksi anodik yang terjadi pada proses korosi logam, yaitu :

M → Mn+ + ne

Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n+) dalam pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi :
Fe → Fe2+ + 2e

b.Reaksi Katodik (Reduksi)
Reaksi katodik terjadi di daerah katode. Reaksi katodik diindikasikan melalui penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik.
Beberapa reaksi katodik yang terjadi selama proses korosi logam, yaitu :
Pelepasan gas hidrogen
2H+ + 2e → H2
Reduksi oksigen
O2 + 4H+ + 4e → 2H2O
O2 + 2H2O + 4e → 4OH­-
Reduksi ion logam
Fe3+ + e → Fe2+
Pengendapan logam
3Na+ + 3e → 3Na
Reduksi ion hidrogen
O2 + 4H+ + 4e → 2H2O

Penyebab Korosi

Faktor yang berpengaruh dan mempercepat korosi yaitu :
a.Air dan kelembapan udara
Air merupakan salah satu faktor penting untuk berlangsungnya proses korosi. Udara yang banyak mengandung uap air (lembap) akan mempercepat berlangsungnya proses korosi.
b.Elektrolit
Elektrolit (asam atau garam) merupakan media yang baik untuk melangsungkan transfer muatan. Hal itu mengakibatkan elektron lebih mudah untuk dapat diikat oleh oksigen di udara. Oleh karena itu, air hujan (asam) dan air laut (garam) merupakan penyebab korosi yang utama.
c.Adanya oksigen
Pada peristiwa korosi adanya oksigen mutlak diperlukan.
d.Permukaan logam
Permukaan logam yang tidak rata memudahkan terjadinya kutub-kutub muatan, yang akhirnya akan berperan sebagai anode dan katode. Permukaan logam yang licin dan bersih akan menyebabkan korosi sukar terjadi, sebab sukar terjadi kutub-kutub yang akan bertindak sebagai anode dan katode.
e.Letak logam dalam deret potensial reduksi
Korosi akan sangat cepat terjadi pada logam yang potensialnya rendah, sedangkan logam yang potensialnya lebih tinggi justru lebih awet.

Cara Mencegah Korosi

1)Dicat
Cat menghindarkan kontak besi dengan udara dan air.
2)Melumuri dengan oli atau minyak
Cara ini diterapkan untuk berbagai perkakas dan mesin oli atau minyak mencegah kontak besi dengan air
3)Dibalut dengan plastik
Berbagai macam barang, misalnya rak piring dan kerancang sepeda dibalut dengan plastik. Plastik mencegah kontak besi udara dan air.
4)Tin plating (pelapisan dengan timah)
Biasanya kaleng-kaleng kemasan terbuat dari besi dilapisi dengan timah. Pelapisan dilakukan secara elektrolisis, yang disebut electro plating. Timah tergolong logam yang tahan karat. Besi yang dilapisi timah tidak mengalami korosi karena tidak adanya kontak dengan oksigen (udara) dan air. Akan tetapi, lapisan timah hanya melindungi besi selama lapisan utuh (tanpa cacat). Apabila lapisan timah ada yang cacat, misalnya tergores, maka timah justru mendorong/mempercepat kolosi besi. Hal itu terjadi karena potensial reduksi besi lebih negatif daripada timah. Oleh karena itu, besi yang dilapisi timah akan membentuk suatu sel elektrokimia dengan besi sebagai anode. Dengan demikian timah mendorong korosi besi.
5)Galvanisasi (pelapisan dengan zink)
Pipa besi, tiang telepon, badan mobil, dan berbagai barang lain dilapisi dengan zink. Berbeda dengan timah, zink dapat melindungi besi dari korosi sekalipun lapisannya tidak utuh. Hal itu terjadi karena suatu mekanisme yang disebut perlindungan katode. Oleh karena potensial reduksi besi lebih positif daripada zink, maka besi yang kontak dengan zink akan membentuk sel elektrokimia dengan besi sebagai katode. Dengan demikian, besi terlindungi dan zink yang mengalami oksidasi.
6)Cromium plating (pelapisan dengan kromium)
Besi atau baja juga dapat dilapisi dengan kromium untuk memberi lapisan pelindung yang mengkilap, misalnya untuk bemper mobil. Cromium plating juga dilakukan dengan elekrolisis. Sama seperti zink, kromium juga dapat memberi perlindungan sekalipun lapisan kromium itu ada yang rusak.
7)Sacrificial protection (pengorbanan anode)
Magnesium adalah logam yang jauh labih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti.

Korosi Aluminium (Perlindungan Katodit)

Aluminium, juga zink dan kromium, merupakan logam yang lebih aktif daripada besi. Jika demikian, mengapa logam-logam ini lebih awet? Sebenarnya, aluminium berkarat dengan cepat membentuk oksida aluminium (Al2O3). Akan tetapi, perkaratan segera terhenti setelah lapisan tipis oksida terbentuk. Lapisan itu melekat pada permukaan logam, sehingga melindungi logam di bawahnya terhadap perkaratan berlanjut.
Lapisan oksida pada permukaan aluminium dapat dibuat lebih tebal melalui elektrolisi, yang disebut anodizing. Aluminium yang telah mengalami anodizing digunakan untuk membuat panci dan berbagai perkakas dapur, bingkai, kerangka bangunan (panel dinding), serta kusen pintu dan jendela. Lapisan oksida aluminium lebih mudah dicat dan memberi warna yang lebih terang.

sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan non-konduktor pada komponen elektronik. Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika renik sampai jembatan baja semakin mudah rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa.
MEKANISME KOROSI

Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Reaksi elektrokimia
melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi
redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi
anodik di daerah anodik. Reaksi anodik (oksidasi) diindikasikan melalui peningkatan valensi
atau produk elektron-elektron. Reaksi anodik yang terjadi pada proses korosi logam yaitu :
M –>Mn+ + ne
Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n+) dalam
pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi :
Fe–>Fe2+ + 2e

Reaksi katodik juga berlangsung di proses korosi. Reaksi katodik diindikasikan melalui
penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik.
Reaksi katodik terletak di daerah katoda. Beberapa jenis reaksi katodik yang terjadi selama
proses korosi logam yaitu :

sebagainya menjadi rusak. Korosi dapat menyebabkan terbentuknya lapisan non-konduktor pada komponen elektronik. Oleh sebab itu, dalam lingkungan dengan tingkat pencemaran tinggi, aneka barang mulai dari komponen elektronika renik sampai jembatan baja semakin mudah rusak, bahkan hancur karena korosi. Dalam beberapa kasus, hubungan pendek yang terjadi pada peralatan elektronik dapat menyebabkan terjadinya kebakaran yang menimbulkan kerugian bukan hanya dalam bentuk kehilangan atau kerusakan materi, tetapi juga korban nyawa.
MEKANISME KOROSI

Mekanisme korosi tidak terlepas dari reaksi elektrokimia. Reaksi elektrokimia
melibatkan perpindahan elektron-elektron. Perpindahan elektron merupakan hasil reaksi
redoks (reduksi-oksidasi). Mekanisme korosi melalui reaksi elektrokimia melibatkan reaksi
anodik di daerah anodik. Reaksi anodik (oksidasi) diindikasikan melalui peningkatan valensi
atau produk elektron-elektron. Reaksi anodik yang terjadi pada proses korosi logam yaitu :
M –>Mn+ + ne
Proses korosi dari logam M adalah proses oksidasi logam menjadi satu ion (n+) dalam
pelepasan n elektron. Harga dari n bergantung dari sifat logam sebagai contoh besi :
Fe–>Fe2+ + 2e

Reaksi katodik juga berlangsung di proses korosi. Reaksi katodik diindikasikan melalui
penurunan nilai valensi atau konsumsi elektron-elektron yang dihasilkan dari reaksi anodik.
Reaksi katodik terletak di daerah katoda. Beberapa jenis reaksi katodik yang terjadi selama
proses korosi logam yaitu :
Pelepasan gas hydrogen :2H- + 2e –>H2
Reduksi oksigen :O2 +4H- + 4e –>H2O
O2+ H2O4 –> 4OH

Reduksi ion logam :Fe 3 ++ e –>Fe 2 +
Pengendapan logam :3Na + + 3 e –> 3 Na
Reduksi ion hydrogen :O2 +4H+ + 4 e –>2H2O
O2+ 2H2O + 4e –> 4OH-
Reaksi katodik dimana oksigen dari udara akan larut dalam larutan terbuka. Reaksi korosi

tersebut sebagai berikut :
NaCl.H2O
2 Fe +O2——————->Fe 2O 3
KLASIFIKASI KOROSI
Korosi Atmosferik.

Tanpa disadari, setiap hari kita berurusan dengan korosi atmosferik, misalnya karat pada
pagar, mobil, atau peralatan rumah tangga lainnya. Korosi atmosferik merupakan hasil
interaksi logam dengan atmosfer ambient di sekitarnya, yang terjadi akibat kelembaban dan
oksigen di udara, dan diperparah dengan adanya polutan seperti gas-gas atau garam-garam
yang terkandung di udara.
Atmosfer yang berpengaruh pada korosi atmosferik dapat dikategorikan menjadi :

Rural. Daerah rural paling tidak korosif karena hanya mengandung sedikit polutan,
dan lebih banyak dipengaruhi oleh embun, oksigen dan CO2.

Urban. Bahan korosif pada daerah urban adalah SOx dan NOx yang berasal dari emisi
kendaraan bermotor dan sedikit aktivitas industri

Jenis spesimen lain yang dapat digunakan adalah bimetalic specimen, di mana kawat dililitkan pada sekrup dari jenis logam yang berbeda. Spesimen ini digunakan pada uji CLIMAT (Classify Industrial and Marine Atmosphere) dan akan memberikan sensitivitas pengukuran yang lebih baik. Umumnya spesimen yang digunakan adalah kawat aluminium yang dililitkan pada sekrup tembaga dan baja, karena kombinasi logam-logam ini memberikan sensitivitas pengukuran tertinggi untuk lingkungan industri dan laut/pantai. Pada tes ini, indeks korosivitas atmosferik ditentukan sebagai persen kehilangan massa pada kawat aluminium.
PENANGGULANGAN KOROSI

Korosi merupakan efek yang paling merusak pada logam, oleh karena itu untuk melindungi logam digunakan banyak cara, yang semuanya ditujukan agar logam tidak cepat rusak karena korosi. Kerusakan karena korosi bisa mencapai 1000 kali lipat lebih cepat pada logam dibandingkan karena pengaruh yang lain. Karena itu timbul berbagai penelitian untuk melindungi logam ini dari pengaruh korosi, dari cara cara yang sederhana seperti hanya dengan melapis permukaan logam dengan mengecat sampai cara cara yang paling modern dengan membuat logam paduan yang tahan terhadap korosi.
Cara cara penanggulangan korosi antara lain:
1. Melapis permukaan logam dengan cat.
2.Melapis permukaan logam dengan proses pelapisan atau Electroplating.
3.Membuat lapisan yang tahan terhadap korosi seperti Anodizing Plant .
4. Membuat sistem perlindungan dengan anoda korban.
5. Membuat logam paduan yang tahan terhadap korosi.

Dari metoda-metoda pelapisan tersebut, masing masing mempunyai keunggulan dan kekurangan. Melapis logam dengan cat merupakan cara yang paling mudah dan murah, tetapi paling cepat rusak daya tahannya. Sedangkan membuat logam paduan adalah cara yang paling rumit dan mahal, tetapi daya tahannya paling bagus. Logam paduan juga ditujukan untuk hal hal lain seperti membuat logam yang kuat tapi ringan, atau logam yang keras tapi getas seperti baja dan sebagainya.

KESIMPULAN
Korosi adalah suatu gejala kimia yang menyerang logam dan mengakibatkan
kerusakan pada logam tersebut. Adapun faktor-faktor yang mempengaruhi korosi, yaitu :
1. Kelembaban udara
2. Elektrolit
3.Zat terlarut pembentuk asam (CO2, SO2)
4.Adanya O2
5. Lapisan pada permukaan logam
6. Letak logam dalam deret potensial reduksi
Korosi dapat dicegah dengan cara :
1. Melapis permukaan logam dengan cat.

2.Melapis permukaan logam dengan proses pelapisan atau Electroplating.
3.Membuat lapisan yang tahan terhadap korosi seperti Anodizing Plant .
4.Membuat sistem perlindungan dengan anoda korban.
5. Membuat logam paduan yang tahan terhadap korosi


Industri. Kondisi atmosfer daerah industri sangat berkaitan dengan polutan yang
dihasilkan oleh industri, seperti SO2, klorida, phospat dan nitrat.

Pantai/laut. Pantai/laut merupakan daerah paling korosif, karena atmosfernya
mengandung partikel klorida yang bersifat agresif dann mempercepat laju korosi

http://www.google.com

Teknologi Pengolahan Limbah Tekstil
Dengan Sistem Lumpur Aktif

ABSTRAK

Lumpur aktif (activated sludge) adalah proses pertumbuhan mikroba tersuspensi. Proses ini pada dasarnya merupakan pengolahan aerobik yang mengoksidasi material organik menjadi CO2 dan H2O, NH4. dan sel biomassa baru. Proses ini menggunakan udara yang disalurkan melalui pompa blower (diffused) atau melalui aerasi mekanik. Sel mikroba membentuk flok yang akan mengendap di tangki penjernihan. Kemampuan bakteri dalam membentuk flok menentukan keberhasilan pengolahan limbah secara biologi, karena akan memudahkan pemisahan partikel dan air limbah. Lumpur aktif dicirikan oleh beberapa parameter, antara lain, Indeks Volume Lumpur (Sludge Volume Index = SVI) dan Stirred Sludge Volume Index (SSVI).

Perbedaan antara dua indeks tersebut tergantung dari bentuk flok, yang diwakili oleh faktor bentuk (Shape Factor = S). Sistem pengolah lumpur aktif baik untuk domestik maupun industri mengandung 1-5% padatan total dan 95-99% bulk water (liqour ?). Pembuangan kelebihan lumpur dilakukan dengan mengurangi volume lumpur melalui proses pengepresan (dewatering). Konsentrasi besi yang tinggi konsentrasi besi yang tinggi, 70-90% dalam bentuk Fe (III), ditemukan dalam lumpur aktif. akumulasi besi dapat berasal dari influent air limbah atau melalui penambahan FeSO4 yang digunakan untuk menghilangkan fosfor. Sebagai contoh pengolahan limbah sistem lumpur aktif adalah Unit Pengelolaan Air Limbah PT. UNITEX. Unit ini mampu mengolah limbah lebih dari 200 m2 per hari. Proses pengelolaan terbagi atas tiga tahap pemrosesan, yaitu : 1. Proses Primer, meliputi penyaringan kasar, penghilangan warna, equalisasi, penyaringan halus, pendinginan, 2. Proses Sekunder, biologi dan sedimentasi dan 3. Proses Tersier, tahap lanjutan dengan penambahan bahan kimia.

Sistem yang digunakan dalam PAL PT. Unitex merupakan perpaduan antara proses fisika, kimia dan biologi. Yang paling berperan dalam hal pengurangan bahan-bahan pencemar adalah proses biologi yang menggunakan sistem lumpur aktif dengan extented aeratio. Selain limbah cair, terdapat juga limbah padat berupa lumpur yang merupakan hasil samping dari sistem pengolahan yang digunakan. Lumpur hasil olahan digunakan sebagai bahan campuran pembuatan coneblock dan batako press serta pupuk organik. Hal ini merupakan salah satu alternatif dan langkah lebih maju dari PT. Unitex dalam memanfaatkan kembali limbah padat.

KATA KUNCI : Lumpur Aktif, Industri, Tekstil, Activated Sludge
JENIS TEKNOLOGI : Teknologi Pengolahan Air Limbah
TARGET PENGGUNAAN : Industri Menengah, Industri Besar

I. PENDAHULUAN

1.1. Latar Belakang

Lumpur aktif (activated sludge) adalah proses pertumbuhan mikroba tersuspensi yang pertama kali dilakukan di Ingris pada awal abad 19. Sejak itu proses ini diadopsi seluruh dunia sebagai pengolah air limbah domestik sekunder secara biologi. Proses ini pada dasarnya merupakan pengolahan aerobik yang mengoksidasi material organik menjadi CO2 dan H2O, NH4. dan sel biomassa baru. Udara disalurkan melalui pompa blower (diffused) atau melalui aerasi mekanik. Sel mikroba membentuk flok yang akan mengendap di tangki penjernihan (Gariel Bitton, 1994).

Anna dan Malte (1994) berpendapat keberhasilan pengolahan limbah secara biologi dalam batas tertentu diatur oleh kemampuan bakteri untuk membentuk flok, dengan demikian akan memudahkan pemisahan partikel dan air limbah. Lumpur aktif adalah ekosistem yang komplek yang terdiri dari bakteri, protozoa, virus, dan organisme-organisme lain. Lumpur aktif dicirikan oleh beberapa parameter, antara lain, Indeks Volume Lumpur (Sludge Volume Index = SVI) dan Stirrd Sludge Volume Index (SSVI). Perbedaan antara dua indeks tersebut tergantung dari bentuk flok, yang diwakili oleh faktor bentuk (Shape Factor = S).

Pada kesempatan lain Anna dan Malte (1997) menyatakan bahwa proses lumpur aktif dalam pengolahan air limbah tergantung pada pembentukan flok lumpur aktif yang terbentuk oleh mikroorganisme (terutama bakteri), partikel inorganik, dan polimer exoselular. Selama pengendapan flok, material yang terdispersi, seperti sel bakteri dan flok kecil, menempel pada permukaan flok. Pembentukan flok lumpur aktif dan penjernihan dengan pengendapan flok akibat agregasi bakteri dan mekanisme adesi. Selanjutnya dinyatakan pula bahwa flokulasi dan sedimentasi flok tergantung pada hypobisitas internal dan eksternal dari flok dan material exopolimer dalam flok, dan tegangan permukaan larutan mempengaruhi hydropobisitas lumpur granular dari reaktor lumpur anaerobik.

Frank et all (1996) mencoba menggambarkan bahwa dalam sistem pengolah lumpur aktif baik untuk domestik maupun industri mengandung 1-5% padatan total dan 95-99% bulk water (liqour ?). Pembuangan kelebihan lumpur merupakan proses yang mahal, dilakukan dengan mengurangi volume lumpur melalui proses pengepresan (dewatering). Pada bagian lain dinyatakan pula bahwa konsentrasi besi yang tinggi konsentrasi besi yang tinggi, 70-90% dalam bentuk Fe (III), ditemukan dalam lumpur aktif.

Akumulasi besi dapat berasal dari influent air limbah atau melalui penambahan FeSO4 yang digunakan untuk menghilangkan fosfor. Jumlah besi dalam lumpur aktif akan berkurang setelah memasuki kondisi anaerobik dan mungkin berasosiasi dengan adanya aktifitas bakteri heterotrofik. Berkurangnya fosfor dalam lumpur aktif dapat menyebabkan fosfor terlepas kedalam air. Jika ini terjadi merupakan potensi untuk terjadinya eutrofikasi pada perairan.

Enri dan Anni (1995) juga mengemukan bahwa limbah padat yang berasal dari suatu instalasi pengolah air limbah industri tekstil dapat digolongkan ke dalam limbah berbahaya karena mengandung logam berat. Mereka mengkaji kemungkinan proses solidifikasi mempergunakan tanah lempung dengan hasil yang cukup baik dari segi kekuatan tekan bebas, permeabilitas, dan hasil lindinya.

1.2. Tujuan dan Sasaran

Penerapan teknologi ini dengan tujuan dapat menghilangkan limbah organik sederhana dan mudah urai, organik kompleks seperti warna, bau. Proses ini juga mengilangkan logam berat. Sasaran dari penerapan teknologi ini adalah air hasil pengolahan limbah tekstil tidak mencemari lingkungan.

1.3. Manfaat

Teknologi ini dapat menurunkan total padatan tersuspensi (TSS) hingga mencapai 91%, COD 62%, Fe 96% dan BOD5 97%. Proses ini juga menghilangkan warna dan bau dari limbah tersebut.

1.4. Kontak Personil
Ir. Arie Herlambang, M.Sc.

Kelompok Teknologi Pengelolaan Air Bersih dan Limbah Cair,
Direktorat Teknologi Lingkungan,
Kedeputian Bidang Informatika, Energi dan Material.
Badan Pengkajian dan Penerapan Teknologi

Jl. M.H. Thamrin No. 8, Jakarta Pusat
Tel. 021-3169769, 3169770 Fax. 021-3169760
Email : air@server.enviro.bppt.go.id
Home Page : http://www.enviro.bppt.go.id/~Kel-1/

II. PROSES LUMPUR AKTIF

2.1. Sistem Lumpur Aktif Konvensional

Proses Lumpur Aktif Konvensional dapat dilihat pada Gambar 1.

Gambar 1. Sistem Lumpur Aktif Konvensional

Tangki aerasi

Oksidasi aerobik material organik dilakukan dalam tangki ini. Efluent pertama masuk dan tercampur dengan Lumpur Aktif Balik (Return Activated Sludge =RAS) atau disingkat LAB membentuk lumpur campuran (mixed liqour), yang mengandung padatan tersuspensi sekitar 1.500 – 2.500 mg/l. Aerasi dilakukan secara mekanik. Karakteristik dari proses lumpur aktif adalah adanya daur ulang dari biomassa. Keadaan ini membuat waktu tinggal rata-rata sel (biomassa) menjadi lebih lama dibanding waktu tinggal hidrauliknya (Sterritt dan Lester, 1988). Keadaan tersebut membuat sejumlah besar mikroorganisme mengoksidasi senyawa organik dalam waktu yang singkat. Waktu tinggal dalam tangki aerasi berkisar 4 – 8 jam.
Tangki Sedimentasi

Tangki ini digunakan untuk sedimentasi flok mikroba (lumpur) yang dihasilkan selama fase oksidasi dalam tangki aerasi. Seperti disebutkan diawal bahwa sebaghian dari lumpur dalam tangki penjernih didaur ulang kembali dalam bentuk LAB kedalam tangki aerasi dan sisanya dibuang untuk menjaga rasio yang tepat antara makanan dan mikroorganisme (F/M Ratio).
Parameter

Parameter yang umum digunakan dalam lumpur aktif (Davis dan Cornwell, 1985; Verstraete dan van Vaerenbergh, 1986) adalah sebagai berikut:

1.

Mixed-liqour suspended solids (MLSS). Isi tangki aerasi dalam sistem lumpur aktif disebut sebagai mixed liqour yang diterjemahkan sebagai lumpur campuran. MLSS adalah jumlah total dari padatan tersuspensi yang berupa material organik dan mineral, termasuk didalamnya adalah mikroorganisma. MLSS ditentukan dengan cara menyaring lumpur campuran dengan kertas saring (filter), kemudian filter dikeringkan pada temperatur 1050C, dan berat padatan dalam contoh ditimbang.
2.

Mixed-liqour volatile suspended solids (MLVSS). Porsi material organik pada MLSS diwakili oleh MLVSS, yang berisi material organik bukan mikroba, mikroba hidup dan mati, dan hancuran sel (Nelson dan Lawrence, 1980). MLVSS diukur dengan memanaskan terus sampel filter yang telah kering pada 600 – 6500C, dan nilainya mendekati 65-75% dari MLSS.
3.

Food – to – microorganism ratio (F/M Ratio). Parameter ini merupakan indikasi beban organik yang masuk kedalam sistem lumpur aktif dan diwakili nilainya dalam kilogram BOD per kilogram MLSS per hari (Curds dan Hawkes, 1983; Nathanson, 1986). Adapun formulasinya sebagai berikut :

F/M = Q x BOD5
MLSS x V

dimana :

Q = Laju alir limbah Juta Galon per hari (MGD)
BOD5 = BOD5 (mg/l)
MLSS = Mixed liquor suspended solids (mg/l)
V = Volume tangki aerasi (Gallon)

Rasio F/M dikontrol oleh laju sirkulasi lumpur aktif. Lebih tinggi laju sirkulasi lumpur aktif lebih tinggi pula rasio F/M-nya. Untuk tangki aerasi konvensional rasio F/M adalah 0,2 – 0,5 lb BOD5/hari/lb MLSS, tetapi dapat lebih tinggi hingga 1,5 jika digunakan oksigen murni (Hammer, 1986). Rasio F/M yang rendah mencerminkan bahwa mikroorganisme dalam tangki aerasi dalam kondisi lapar, semakin rendah rasio F/M pengolah limbah semakin efisien.
4.

Hidraulic retention time (HRT). Waktu tinggal hidraulik (HRT) adalah waktu rata-rata yang dibutuhkan oleh larutan influent masuk dalam tangki aerasi untuk proses lumpur aktif; nilainya berbanding terbalik dengan laju pengenceran (D) (Sterritt dan Lester, 1988).

HRT = 1/D = V/ Q

dimana :

V = Volume tangki aerasi
Q = Laju influent air limbah ke dalam tangki aerasi
D = Laju pengenceran.

5.

Umur lumpur (Sludge age). Umur lumpur adalah waktu tinggal rata-rata mikroorganisme dalam sistem. Jika HRT memerlukan waktu dalam jam, maka waktu tinggal sel mikroba dalam tangki aerasi dapat dalam hari lamanya. Parameter ini berbanding terbalik dengan laju pertumbuhan mikroba. Umur lumpur dihitung dengan formula sebagai berikut (Hammer, 1986; Curds dan Hawkes, 1983) :

Umur Lumpur (Hari) = MLSS x V
SSe x Qe + SSw X Qw

dimana :

MLSS = Mixed liquor suspended solids (mg/l).
V = Volume tangki aerasi (L)
SSe = Padatan tersuspensi dalam effluent (mg/l)
SSw = Padatan tersuspensi dalam lumpur limbah (mg/l)
Qe = Laju effluent limbah (m3/hari)
Qw = Laju influent limbah (m3/hari).

Umur lumpur dapat bervariasi antara 5 – 15 hari dalam konvensional lumpur aktif. Pada musim dingin lebih lama dibandingkan musim panas (U.S. EPA, 1987a). Parameter penting yang mengendalikan operasi lumpur aktif adalah laju pemuatan organik, suplay oksigen, dan pengendalian dan operasi tangki pengendapan akhir. Tangki ini mempunyai dua fungsi: penjernih dan penggemukan mikroba. Untuk operasi rutin, orang harus mengukur laju pengendapan lumpur dengan menentukan indeks volume lumpur (SVI), Voster dan Johnston, 1987.

II. PROSES LUMPUR AKTIF

2.2. Modifikasi Proses Lumpur Aktif Konvensional

Ada beberapa modifikasi dari proses lumpur aktif konvensional (Nathanson, 1986; US. EPA, 1977), Lihat Gambar 2.

Gambar 2. Modifikasi proses lumpur aktif.
A. Sistem aerasi lanjutan. B. Parit oksidasi (US EPA, 1977, dalam Bitton, 1994)

Sistem Aerasi Lanjutan

Proses ini dipakai dalam instalasi paket pengolahan dengan cara sebagai berikut :

1.

Waktu aerasi lebih lama (sekitar 30 jam) dibandingkan sistem konvensional. Usia lumpur juga lebih lama dan dapat diperpanjang sampai 15 hari.
2.

Limbah yang masuk dalam tangki aerasi tidak diolah dulu dalam pengendapan primer.
3.

Sistem beroperasi dalam F/M ratio yang lebih rendah (umumnya <0,1 lb BOD/hari/lb MLSS) dari sistem konvensional (0,2 – 0,5 lb BOD/hari/lb MLSS).
4.

Sistem ini membutuhkan membutuhkan sedikit aerasi dibandingkan dengan pengolahan konvensional dan terutama cocok untuk komunitas yang kecil yang menggunakan paket pengolahan.

Selokan Oksidasi (Oxidation Ditch)

Selokan oksidasi terdiri dari saluran aerasi yang berbentuk oval yang dilengkapi dengan satu atau lebih rotor rotasi untuk aerasi limbah. Saluran ini menerima limbah yang telah disaring dan mempunyai waktu tinggal hidraulik (hidraulic retention time) mendekati 24 jam.
Aerasi Bertingkat

Limbah hasil dari pengolahan primer (pengendapan) masuk dalam tangki aerasi melalui beberapa lubang atau saluran, sehingga meningkatkan distribusi dalam tangki aerasi dan membuat lebih efisien dalam penggunaan oksigen. Proses ini dapat meningkatkan kapasitas sistem pengolahan.
Stabilisasi Kontak

Setelah limbah dan lumpur bercampur dalam tangki reaktor kecil untuk waktu yang singkat (20-40 menit), aliran campuran tersebut dialirkan ke tangki penjernih dan lumpur dikembalikan ke tangki stabilisasi dengan waktu tinggal 4 – 8 jam. Sistem ini menghasilkan sedikit lumpur.
Sistem Aerasi Campuran

Pada sistem ini limbah hanya diaerasi dalam tangki aerasi secara merata. Sistem ini dapat menahan shock load dan racun.
Lumpur Aktif Kecepatan Tinggi

Sistem ini digunakan untuk mengolah limbah konsentrasi tinggi dan dioperasikan untuk beban BOD yang sangat tinggi dibandingkan proses lumpur aktif konvensional. Proses ini mempunyai waktu tinggal hidraulik sangat singkat. Sistem ini beroperasi pada konsentrasi MLSS yang tinggi.
Aerasi Oksigen Murni

Sistem aerasi dengan oksigen murni didasarkan pada prinsip bahwa laju tranfer oksigen lebih tinggi pada oksigen murni dari pada oksigen atmosfir. Proses ini menghasilkan kemampuan oksigen terlarut menjadi lebih tinggi, sehingga meningkatkan efisiensi pengolahan dan mengurangi produksi lumpur.
2.3. Biologi Lumpur Aktif

Dua tujuan dari sistem lumpur aktif pertama adalah oksidasi material organik yang biodegradable dalam tangki aerasi kemudian dikonversi menjadi bentuk sel yang baru, kedua flokulasi, memisahkan biomassa yang baru terbentuk dari air effluent.
Survei Organisme Dalam Lumpur Aktif

Flok dalam aktifitas lumpur mengandung sel bakteri disamping partikel anorganik dan organik. Ukuran flok bervariasi antara <1 m m (ukuran beberapa sel bakteri) sampai dengan 1 000 m m atau lebih (Parker et al., 1971; U.S.EPA, 1987a), Lihat Gambar 3. Sel hidup dalam flok dapat diukur dengan analisis ATP dan aktifitas dehidrogenase, berjumlah 5-20% dari total sel (Weddle dan Jenkins, 1971). Beberapa peneliti menjaga agar fraksi aktif bakteri dalam lumpur aktif mewakili hanya 1-3% bakteri total (Hanel, 1988).

Gambar 3. Distribusi ukuran partikel dalam lumpur aktif
(Parker et al, 1971, dalam Bitton, 1994).

Berikut ini adalah beberapa mikroorganisme yang dapat diamati dalam flok lumpur aktif.
Bakteri

Bakteri merupakan unsur utama dalam flok lumpur aktif. Lebih dari 300 jenis bakteri yang dapat ditemukan dalam lumpur aktif. Bakteri tersebut bertanggung jawab terhadap oksidasi material organik dan tranformasi nutrien, dan bakteri menghasilkan polisakarida dan material polimer yang membantu flokulasi biomassa mikrobiologi. Genus yang umum dijumpai adalah : Zooglea, Pseudomonas, Flavobacterium, Alcaligenes, Bacillus, Achromobacter, Corynebacterium, Comomonas, Brevibacterium, dan Acinetobacter, disamping itu ada pula mikroorganisme berfilamen, yaitu Sphaerotilus dan Beggiatoa, Vitreoscilla yang dapat menyebabkan sludge bulking.

Karena tingkat oksigen dalam difusi terbatas, jumlah bakteri aktif aerobik menurun karena ukuran flok meningkat (Hanel, 1988). Bagian dalam flok yang relatif besar membuat kondisi berkembangnya bakteri anaerobik seperti metanogen. Kehadiran metanogen dapat dijelaskan dengan pembentukan beberapa kantong anaerobik didalam flok atau dengan metanogen tertentu terhdap oksigen (Wu et al., 1987). Oleh karena itu lumpur aktif cukup baik dan cocok untuk material bibit bagi pengoperasian awal reaktor anaerobik.
Tabel 1. Distribusi Bakteri Heteropik Aerobik Dalam Lumpur Aktif Standard
(Hiraishi et al. (1989).

GENUS
KELOMPOK PERSENTASI
DARI TOTAL ISOLAT
Comamonas-Pseudomonas 50

Alkaligenes
5,8
Pseudomonas (Kelompok Florescent) 1,9
Paracoccus 11,5
Unidentified (gram negative rods) 1,9
Aeromomas 1,9
Flavobacterium – Cytophaga 13,5
Bacillus 1,9
Micrococcus 1,9
Coryneform 5,8
Arthrobacter 1,9
Aureobacterium-Microbacterium 1,9

Jumlah total bakteri dalam lumpur aktif standard adalah 108 CFU/mg lumpur. Tabel 1. menunjukkan beberapa genus bakteri yang ditemui dalam standard lumpur aktif. Sebagian besar bakteri yang diisolasi diidentifikasi sebagai spesies-spesies Comamonas-Psudomonas.

Caulobacter, bakteri bertangkai umumnya ditemukan dalam air yang miskin bahan organik, dapat diisolasi dari kebanyakan pengolahan limbah, khususnya lumpur aktif (MacRae dan Smit, 1991).

Gambar 4. Distribusi

Zoogloea adalah bakteri yang menghasilkan exopolysaccharide yang membentuk proyeksi khas seperti jari tangan dan ditemukan dalam air limbah dan lingkungan yang kaya bahan organik (Norberg dan Enfors, 1982; Unz dan Farrah, 1976; Williams dan Unz, 1983). Zoogloea diisolasi dengan menggunakan media yang mengandung m-butanol, pati, atau m-toluate sebagai sumber karbon. Bakteri ini ditemukan dalam berbagai tahap pengolahan limbah tetapi jumlahnya hanya 0,1-1% dari total bakteri dalam mixed liqour (Williams dan Unz, 1983). Kepentingan relatif bakteri ini dalam air limbah membutuhkan penelitian lebih lanjut.

Flok lumpur aktif juga merupakan tempat berkumpulnya bakteri autotrofik seperti bakteri nitrit (Nitrosomonas, Nitrobacter), yang dapat merubah amonia menjadi nitrat dan bakteri fototrofik seperti bakteri ungu non sulfur (Rhodospilrillaceae), yang dapat dideteksi pada konsentrasi sekitar 105 sel/ml. Bakteri ungu dan hijau ditemukan dalam jumlah yang sangat kecil. Barangkali, bakteri fototrofik hanya sedikit berperan dalam penurunan nilai BOD dalam lumpur aktif (Madigan, 1988; Siefert et al., 1978).
Fungi

Lumpur aktif biasanya tidak mendukung kehidupan fungi walaupun beberapa fungi berfilamen kadang-kadang ditemukan dalam flok lumpur aktif. Fungi dapat tumbuh pesat dibawah kondisi pH yang rendah, toksik, dan limbah yang kekurangan nitrogen. Genus yang dominan ditemukan dalam lumpur aktif adalah Geotrichum, Penicillium, Cephalosporium, Cladosporium, dan Alternaria (Pipes dan Cooke, 1969; Tomlinson dan Williams, 1975). Lumpur ringan (Sludge Bulking) dapat dihasilkan oleh pertumbuhan yang pesat Geotrichum candidum, yang dirangsang oleh pH rendah dari limbah yang asam.
Protozoa

Protozoa adalah significant predator dalam lumpur aktif seperti dalam lingkungan akuatik alam (Curds, 1982; Drakides, 1980; Fenchel dan Jorgensen, 1977; LaRiviere, 1977). Pemakanan bakteri oleh protozoa dapat ditentukan dengan eksperimen pemakanan bakteri yang telah diberi 14C atau 35C atau flouresen (Hoffmann dan Atlas, 1987; Sherr et al, 1987). Pemakanan bakteri tersebut dapat mereduksi toksikan. Contoh, Aspidisca costata yang memakan bakteri dalam lumpur aktif dapat menurunkan Kadmium (Hoffmann dan Atlas, 1987). Protozoa paling sering ditemukan dalam lumpur aktif adalah Carchesium, Paramecium sp, Opercularia sp, Chilodenella sp, Vorticella sp, Apidisca sp (Dart dan Stretton, 1980, Edeline, 1988; Eikelboom dan van Buijsen, 1981).

Cilliata. Siliata atau bulu getar digunakan untuk pergerakan dan mendorong partikel makanan kedalam mulut . Siliata dibagi menjadi tiga, yaitu : Siliata bebas (free), merayap (creeping), dan bertangkai (stalked). Siliata bebas (tidak terikat) memakan bakteri bebas yang terbang. Genus yang paling penting sering ditemukan dalam lumpur aktif adalah Chilodonella, Colpidium, Blepharisma, Euplotes, Paramecium, Lionotus, Trachelophyllum, dan Spirostomum. Siliata merayap memakan bakteri yang berada dipermukaan flok lumpur aktif. Dua genus penting, yaitu : Aspidisca dan Euplotes. Cilitas bertangkai menempel tangkainya pada flok. Tangkai mempunyai myoneme untuk menangkap mangsa. Contoh siliata bertangkai adalah Vorticella, Carchesium, Opercularia, dan Epistylis.
Rotifers

Rotifers adalah metazoa (organisme bersel banyak) dengan ukuran bervariasi dari 100 mm – 500 m m.

Berdasarkan Standard WHO, ada 4 penggolongan air berdasarkan kadar logam dalam air (TDS= Total Disolve Solid);
1. Air Murni, 0 – 40 TDS
2. Air Minum, 41 – 150 TDS
3. Air Layak Minum, 151 – 500 TDS
4. Air Tidak Layak Minum, 501 – Up

Air adalah sarana untuk bersuci dari hadas dan najis. Air yang sah untuk bersuci itu ada tujuh macam: air hujan, air laut (air asin), air sungai (air tawar), air sumur, air sumber (mata air), air es, dan air embun.
Ketujuh macam air tersebut dapat diringkas menjadi dua macam air saja, yaitu air yang turun dari langit dan air yang keluar dari bumi.
Pembagian air sendiri ada empat macam. Berikut pembagian air itu secara lebih terinci:
1. Air yang suci dan menyucikan kepada yang lainnya. Air ini tidak makruh dipakai. Air yang sedemikian disebut air mutlak yang tidak terikat tetap, meskipun air yang terikat tetap disebut air mutlak, seperti air sumur, air hujan, air embun, air sumber, dan air es yang sudah hancur.
2. Air suci yang menyucikan, tapi makruh memakainya untuk badan dan tidak makruh untuk pakaian, yaitu air yang dipanaskan dengan sinar matahari. Dalam pandangan agama, air yang dipanaskan sinar matahari hukumnya makruh apabila wadahnya selain emas dan perak, seperti besi, tembaga, dan timah. Apabila air yang panas tersebut menjadi dingin lagi, maka hukumnya tidak makruh lagi. Imam Nawawi berpendapat bahwa air tersebut hukumnya mutlak tidak makruh. Memakai air yang sangat panas atau sangat dingin hukumnya makruh seperti air yang dipanaskan.
3. Air suci tetapi tidak dapat menyucikan. Air yang demikian itu disebut air musta‘mal, yaitu air yang sudah digunakan untuk menghilangkan hadas dan najis jika air tersebut tidak berubah atau bertambah dari asalnya sesudah dianggap ada air yang meresap pada sesuatu yang basah. Termasuk air yang suci tetapi tidak menyucikan adalah air yang berubah salah satu dari beberapa sifatnya yang disebabkan tercampur benda-benda suci sehingga menghilangkan nama kemutlakan air tersebut. Selanjutnya, air tersebut dihukumi suci tetapi tidak menyucikan. Perubahan air tadi baik dengan pancaindra atau dengan perkiraan, sebagaimana bila air tersebut tercampur benda-benda yang kebetulan sifatnya sama, misalnya tercampur air mawar yang sudah hilang baunya atau tercampur air musta‘mal.
Apabila air yang berubah itu tidak sampai menghilangkan nama air mutlak seperti air sedikit mengalami perubahan disebabkan bercampur benda suci atau air tadi berubah sebab bercampur dengan benda yang mempunyai sifat yang sama dengan air dan diperkirakan benda tadi berbeda sifatnya tetapi tidak merubah keadaan air tersebut, maka air tersebut hukumnya suci dan menyucikan.
Air yang berubah sebab berdampingan dengan sesuatu suci yang memungkinkan dapat dipisahkan atau dapat dilihat mata seperti bercampur dengan minyak meskipun berubahnya itu banyak, maka air tersebut tetap suci. Begitu juga air yang berubah lantaran bercampur dengan lumpur dan lumut serta benda-benda yang ada di tempat menggenang dan mengalirnya air atau air yang berubah itu disebabkan terlalu lama berhenti di tempatnya, maka air tersebut tetap suci.
4. Air najis, yaitu air suci yang terkena najis. Air najis ini terbagi menjadi dua, yaitu: (a) air yang sedikit, kurang dari dua kulah yang terkena najis baik berubah atau tidak; (b) air yang banyak (dua kulah atau lebih) yang berubah sebab kemasukan sesuatu, baik berubahnya itu sedikit atau banyak.
Yang dimaksud air dua kulah–menurut ukuran di Bagdad–sebanyak 500 kati (10 jeriken). Ini pendapat yang paling kuat. Ukuran per satu kati menurut pendapat Imam Nawawi adalah bernilai 128 dirham lebih 4/7 dirham. Air dua kulah sendiri kalau diukur dengan ukuran liter adalah sebagai berikut:
a. Menurut Imam Nawawi : 174,580 liter = 55,9 cm per segi.
b. Menurut Imam Rafi‘i : 176,245 liter = 56,1 cm per segi.
c. Menurut ulama Irak : 245.325 liter = 63,4 cm per segi.
Penulis kitab fikih Fathul Qarib tidak menjelaskan pembagian air yang nomor lima yaitu air suci tapi haram menggunakannya, seperti wudu dengan air yang diperoleh dengan cara mencuri atau menggasab atau air yang ada di tepi jalan untuk persediaan orang yang membutuhkan minum (Fathul Qarib, hlm. 3-4).

Diposkan oleh mirza di 19.45

Perbedaan Adobe Photoshop dengan CorelDraw

Adobe Photoshop
Adobe Photoshop adalah software yang dibuat oleh perusahaan Adobe System, yang dikhususkan untuk pengeditan foto atau gambar dan pembuatan effect. Perangkat lunak ini banyak digunakan oleh Fotografer Digital dan perusahaan iklan sehingga dianggap sebagai pemimpin pasar (market leader) untuk perangkat lunak pengolah gambar. Meskipun pada awalnya Photoshop dirancang untuk menyunting gambar untuk cetakan berbasis-kertas, Photoshop yang ada saat ini juga dapat digunakan untuk memproduksi gambar untuk World Wide Web. Beberapa versi terakhir juga menyertakan aplikasi tambahan, Adobe ImageReady, untuk keperluan tersebut.
Photoshop juga memiliki hubungan erat dengan beberapa perangkat lunak penyunting media, animasi, dan authoring buatan Adobe lainnya.

Kegunaan Adobe Photoshop
– Untuk penyuntingan foto/gambar dan pembuatan kesan gambar.
– Mengerti dan memahami tentang pembuatan gambar dengan pola texture / pattern menggunakan aplikasi Adobe Photoshop
– Mengetahui kemudahan pembuatan dan kelebihan penggunaan gambar dengan pola texture / pattern ini sehingga dapat menghiasi gambar dengan aneka texture/pattern yang diciptakan.
– Mampu membuat gambar artistik dengan teknik pola texture/pattern yang dapat digunakan pada benda atau objek -objek tertentu seperti tembok, lantai, atap, dan lain lain.

Kelebihan Adobe Photoshop
Adobe Photoshop mempunyai banyak fasilitas yang memungkinkan seorang Desainer menciptakan efek-efek tertentu dan bisa menggunakan banyak variasi dari fasilitas yang disediakan oleh Adobe Photoshop, beberapa diantaranya yaitu:
– Membuat tulisan dengan effect tertentu.
Photoshop dapat mengubah bentuk tulisan menjadi lebih kreatif dan inovatif dengan tool effect yang ada didalamnya
– Membuat tekstur dan material yang beragam.
Dengan langkah-langkah tertentu, seorang Desainer dapat membuat gambar misalnya daun, logam, air, dan bermacam gambar lainnya
– Mengedit foto dan gambar yang sudah ada.
Dengan Photoshop kita dapat merubah gambar kita jelek menjadi bagus ataupun sebaliknya. Selain itu juga Photoshop dapat merubah foto seseorang menjadi sebuah gambar kartun. Atau dalamDesign Grafis disebut vector and vexel.
– Memproses materi Web.
Photoshop juga digunakan untuk keperluan web, misalnya: kompresi file gambar agar ukurannya lebih kecil, memotong gambar kecil-kecil (slice), dan membuat web photo gallery. Dengan Adobe Image Ready, gambar yang sudah ada bisa dibuat untuk keperluan web, misalnya menjadi rollover dan animasi GIF.
– Photoshop memiliki kemampuan untuk membaca dan menulis gambar berformat raster dan vektor seperti .png, .gif, .jpeg, dan lain-lain.

Fitur Adobe Photoshop
Meskipun pada awalnya Photoshop dirancang untuk menyunting gambar untuk cetakan berbasis-kertas, Photoshop yang ada saat ini juga dapat digunakan untuk memproduksi gambar untuk World Wide Web. Beberapa versi terakhir juga menyertakan aplikasi tambahan, Adobe ImageReady, untuk keperluan tersebut. Photoshop juga memiliki hubungan erat dengan beberapa perangkat lunak penyunting media, animasi, dan authoring buatan-Adobe lainnya. File format asli Photoshop, .PSD, dapat diekspor ke dan dari Adobe ImageReady. Adobe Illustrator, Adobe Premiere Pro, After Effects dan Adobe Encore DVD untuk membuat DVD profesional, menyediakan penyuntingan gambar non-linear dan layananspecial effect seperti background, tekstur, dan lain-lain untuk keperluan televisi, film, dan situs web. Sebagai contoh, Photoshop CS dapat digunakan untuk membuat menu dan tombol (button) DVD.
Photoshop dapat menerima penggunaan beberapa model warna:
– RGB color model
– Lab color model
– CMYK color model
– Grayscale
– Bitmap
– Duotone

Kekurangan Adobe Photoshop
Kekurangan Adobe Photoshop dalam menciptakan Image adalah bahwa Adobe Photoshop hanya bisa digunakan untuk menciptakan Image yang statis, dan juga dengan berkembangnya versi Photoshop sekarang ini spesifikasi Komputer untuk menjalankan program Adobe Photoshop juga harus sudah tinggi dan yang pasti akan diimbangi oleh harga yang tinggi pula.

CorelDraw
CorelDraw merupakan salah satu aplikasi pengolah gambar berbasis vector yang banyak dipakai oleh pengguna PC. Karena berbagai kemudahan dan keunggulan yang dimiliki oleh coreldraw, maka coreldraw sering dimanfaatkan untuk desktop publishing, percetakan, dan bidang lain yang memerlukan pemrosesan visual. CorelDraw juga merupakan program berbasis vektor yang digunakan untuk membuat vektor seni. Ini berarti bahwa karya seni yang dibuat dengan menggunakan persamaan matematika.Hal ini memungkinkan Anda untuk memperbesar atau menurunkan gambar tanpa kehilangan integritas apapun dalam desain. Kebanyakan logo diciptakan sebagai format vektor sehingga mereka dapat ditingkatkan untuk menjadi kecil seperti kartu nama atau besar seperti di papan reklame dengan pixilation.

Kelebihan CorelDraw
• exim (export-import) format grafis yang didukung sangat banyak sehingga membantu kompatibilitasnya.
• mempunyai banyak tools dan effect yang memudahkan pembuatan objek vector (garis, lengkung, kotak) terutama dalam mendesain/redesign logo.
• untuk duplikasi objek banyak sekali langkah yang bisa digunakan misalnya dengan menekan tombol ‘+’ pada keypad, Ctrl+D, Copas, Effect Blend, mirror transform dll.
• font bawaan CorelDraw sangat banyak sehingga mencukupi dalam pembuatan logo dll.
• coreldraw sangat bagus dalam kolaborasi teks dan gambar. Meskipun photoshop juga bisa namun lebih mudah dengan coreldraw.
• Selain itu kelebihan coreldraw yang jarang dimiliki oleh aplikasi desain grafis dan pengolah gambar yang lain adalah dukungan forum dan komunitas coreldraw yang begitu banyak dan beragam.

Kekurangan CorelDraw
• Memakan memori dan resource lain yang sangat besar apalagi bila gambar yang sedang dibuat mempunyai detail yang banyak. Pada PC yang low end penggunaan CDR sering menimbulkan pesan ‘crash’ pada system bahkan dalam proses effect bevel/emboss dalam PC yang bagus pun dapat timbul ‘hang’.
• Besar file yang dibuat membengkak
• Warna yang dicetak tidak akurat (tidak sesuai dengan tampilan layar) pada beberapa jenis printer
• Dalam pembuatan objek table tidak semudah membuat table dalam MS Word. Yaitu dengan cara yang sangat manual
• Apabila ada penggabungan objek vector dan photo/bitmap kualitas cetakannya kurang memuaskan, misalnya membuat cover buku yang terdapat objek text dan photo.
• Kompatibilitas versi CorelDraw banyak kendala dalam sharing ke versi lainnya.

Kesimpulan
Pada dasarnya setiap program desain grafis memilikinkelebihan dan kekurangan masing-masing. Ada pekerjaan yang sangat mudah dikerjakan dengan menggunakan Adobe Photoshp, tetapi sulit dikerjakan dengan CorelDraw dan sebaliknya. Pemilihan terhadap program yang akan dipakai tergantung kepada kebutuhan dan penguasaan pengguan computer. Namun demikian, secara umum semua program desain grafis memiliki cara kerja yang hampir sama, yaitu membuat objek, memanipulasi objek, dan menciptakan objek yang tidak bisa dikerjakan oleh program-program lainnya.